Roll No.

$$Y - 145 / Y - 146 / Y - 147 (S)$$

B.A. (First Year) EXAMINATION, (Suppl./Second Chance) Sept.-2021 MATHEMATICS

Paper – I, II, III

ALGEBRA AND TRIGONOMETRY/CALCULUS AND DIFFERENTIAL EQUATIONS/VECTOR ANALYSIS AND GEOMETRY

Time: Three Hours

Maximum Marks : 40 + 40 + 40 = 120 (For Regular Students) Minimum Pass Marks : 33% Maximum Marks : 50 + 50 + 50 = 150 (For Private Students) Minimum Pass Marks : 33%

नोट- सभी प्रश्न हल कीजिये।

Attempt *all* questions.

खण्ड (अ)

Section A

1. व्युत्क्रमणीय आव्यूहों P तथा Q को ज्ञात कीजिये जो इस प्रकार है कि PAQ प्रसामान्य रूप में है, जहाँ 13/17

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

Find non-singular matrices P and Q such that PAQ is in the normal form, where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

2. आव्यूह $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ के अभिलाक्षणिक समीकरण को ज्ञात कीजिये और सत्यापित कीजिये

कि यह A द्वारा सन्तुष्ट होता है। A-1 भी ज्ञात कीजिये।

Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and verify

that it is satisfied by A. Also obtain A⁻¹.

3. यदि समीकरण $x^3+3px^2+3qx+r=0$ के मूल हरात्मक श्रेणी में हों तो सिद्ध कीजिये कि $2q^3=r\ (3pq-r)$ 14/17

If the roots of the equation $x^3 + 3px^2 + 3qx + r = 0$ are in H.P., then prove that $2q^3 = r(3pq - r)$.

खण्ड (ब)

Section B

4. यदि $y = a \cos(\log x) + b \sin(\log x)$, तब दिखाईये कि $x^2y_2 + xy_1 + y = 0$ और सिद्ध कीजिये 13/16

$$x^{2}y_{n+2} + (2n+1) xy_{n+1} + (n^{2} + 1) y_{n} = 0$$

If $y = a \cos(\log x) + b \sin(\log x)$ then show that $x^2y_2 + xy_1 + y = 0$ and prove that

$$x^{2}y_{n+2} + (2n+1) xy_{n+1} + (n^{2} + 1) y_{n} = 0$$

5. यदि CP और CD एक दीर्घवृत्त के संयुग्मी अर्द्धव्यास हों तो सिद्ध कीजिये कि बिन्दु P पर वक्रता

त्रिज्या
$$\frac{\mathrm{CD}^3}{ab}$$
 होगी; जहाँ a और b दीर्घवृत्त के अर्द्धाक्षों की लम्बाईयाँ हैं। 13/17

If CP and CD be a pair of conjugate semi-diameters of an ellipse, prove that

radius of curvature at P is $\frac{\text{CD}^3}{ab}$, a and b being lengths of semi-axes of the ellipse.

6. हल कीजिये— 14/17

$$p^2 + 2py \cot x - y^2 = 0$$

Solve—

$$p^2 + 2py \cot x - y^2 = 0$$

ਯਾਤ (ਸ)

Section C

7. $\phi = x^2yz + 4xz^2$ का दिक् अवकलज बिन्दु (1, -2, -1) पर 2i - j - 2k की दिशा में ज्ञात कीजिये। किस दिशा में दिशीय अवकलज अधिकतम होगा?

Find the directional derivative of $\phi = x^2yz + 4xz^2$ in the direction of the vector 2i - j - 2k at the point (1, -2, -1).

8. $\int_{c} \mathbf{F} \cdot d\mathbf{r}$ का मूल्यांकन कीजिये, जहाँ $\mathbf{F} = xyi + yzj + zxk$ तथा \mathbf{C} वक्र $\mathbf{r} = ti + t^2j + t^3k$ है, जहाँ t, -1 से 1 तक बदलता है।

Evaluate $\int_{C} F \cdot dr$, where F = xyi + yzj + zxk and C is the curve $r = ti + t^2j + t^3k$, t varying from -1 to 1.

9. शांकव का अनुरेखण कीजिये—

14/17

$$21x^2 - 6xy + 29y^2 + 6x - 58y - 151 = 0$$

Trace the conic—

$$21x^2 - 6xy + 29y^2 + 6x - 58y - 151 = 0$$